
Applied Ergonomics 119 (2024) 104305

Available online 10 May 2024
0003-6870/© 2024 Elsevier Ltd. All rights reserved.

Cognitive workload classification of law enforcement officers using 
physiological responses 

David Wozniak , Maryam Zahabi * 

Wm Michael Barnes ‘64 Department of Industrial & Systems Engineering, Texas A&M University, College Station, TX, USA   

A R T I C L E  I N F O   

Keywords: 
Machine learning algorithm 
Law enforcement officers 
Adaptive technology 

A B S T R A C T   

Motor vehicle crashes (MVCs) are a leading cause of death for law enforcement officers (LEOs) in the U.S. LEOs 
and more specifically novice LEOs (nLEOs) are susceptible to high cognitive workload while driving which can 
lead to fatal MVCs. The objective of this study was to develop a machine learning algorithm (MLA) that can 
estimate cognitive workload of LEOs while performing secondary tasks in a patrol vehicle. A ride-along study was 
conducted with 24 nLEOs. Participants performed their normal patrol operations while their physiological re-
sponses such as heartrate, eye movement, and galvanic skin response were recorded using unobtrusive devices. 
Findings suggested that the random forest algorithm could predict cognitive workload with relatively high ac-
curacy (>70%) given that it was entirely reliant on physiological signals. The developed MLA can be used to 
develop adaptive in-vehicle technology based on real-time estimation of cognitive workload, which can reduce 
the risk of MVCs in police operations.   

1. Introduction 

Motor vehicle crashes (MVCs) are one of the most prevalent causes of 
death in the U.S. About 46,000 people lost their lives in car crashes and 
roughly 5.2 million people were seriously injured due to crashes in 2022 
alone (NSC, 2022). MVCs are also the leading cause of line-of-duty 
deaths for public safety workers and more specifically law enforce-
ment officers (LEOs) (BLS, 2020). Compared to firefighters and emer-
gency medical services workers, LEOs (people responsible for, among 
other duties, enforcing state and local law via patrolling and responding 
to emergency situations in their vehicles) are involved in a significantly 
higher number of fatal MVCs (BLS, 2019). These crashes account for 
around 30–40% of LEOs’ fatal work injuries (NLEMF, 2020, 2023). For 
example, in 2023, 37 LEOs have died due to traffic-related crashes in the 
U.S. (NLEMF, 2023). Additionally, compared to all other occupations, 
LEO MVCs are 2.5 times more than the national average (Maguire et al., 
2002). Primary reasons for these crashes include the frequent use of 
in-vehicle technology while driving (Yager et al., 2015), fatigue (Vila 
and Kenney, 2002), and lack of sufficient training in handling 
high-demand situations (e.g., pursuit situations, multi-tasking) 
(Hembroff et al., 2018). LEOs and more specifically novice LEOs 
(nLEOs) with less than 5 years of patrol experience were selected as the 
focus of this study because they are at the highest risk among all 

emergency responders to be involved in crashes (Maguire et al., 2002). 
Novice LEOs tend to be at higher risk due to experiencing higher 
workload caused by having to review more chunks of data to come to a 
decision and having more frequent saccades, fixations, and time to 
detect road anomalies (Park et al., 2024)(). 

Police in-vehicle technology include the technology that civilian 
drivers interact with frequently such as cell phones and global posi-
tioning systems (GPS) as well as LEO-specific technology such as mobile 
computer terminals (MCTs) (a laptop that provides real-time navigation 
and case information to LEOs) and dispatch radios. In prior in-
vestigations (Park et al., 2020; Shupsky et al., 2021; Zahabi and Kaber, 
2018a, 2018b; Zahabi et al., 2020), the MCT and radio were found to be 
the most important and frequently used in-vehicle technologies for LEOs 
while driving, primarily used for tasks such as researching case infor-
mation, communicating with dispatch officers, and navigation. Use of 
these technologies has increased LEOs’ distraction and cognitive work-
load while driving (Shahini et al., 2020). However, research on the 
development of technology to aid LEOs that incorporates their mental 
workload or performance has been insufficient, with most studies 
focused on analyzing workload through simulator studies or on 
analyzing the devices used while LEOs complete the patrol task (Zahabi 
et al., 2021; Shupsky et al., 2021; Zahabi et al., 2021). Some studies 
introduced adaptive technology features to the MCT (i.e., changing the 
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information presentation based on the context) (Kurkinen et al., 2010; 
Streefkerk et al., 2006). However, these adaptations were limited to 
specific MCT tasks, did not consider driver cognitive state, and have not 
been implemented in current MCTs used by police departments. Other 
studies developed adaptive technology solutions for civilian drivers, 
under normal driving situations, and with relatively simple secondary 
tasks (e.g., Park and Kim, 2015). However, there are several differences 
between LEOs and civilian drivers such as the temporal demands placed 
on the officers due to the need for real-time information access, 
complexity of in-vehicle technology (e.g., MCT), and driving situations 
(e.g., driving in pursuit conditions) (Zahabi et al., 2021). Furthermore, 
LEOs’ in-vehicle technologies are designed assuming that the user per-
forming a task is an expert and do not make mistakes or decisions that 
are not optimal (Zahabi and Kaber, 2018b). This assumption has pre-
vented the technologies from being effectively designed around the 
cognitive processes of a novice or focusing on how those processes differ 
from expert cognition. Novices deal with higher cognitive workload (the 
mental effort an individual exerts to complete a task) compared to 
experienced drivers and they are more vulnerable to the risk of MVCs 
while driving (Moray, 2013). To better aid in the design of technology to 
reduce cognitive workload, novice behavior must be more effectively 
accounted for. 

Police in-vehicle technology should adjust its function or presenta-
tion in response to the current state of the officer. This could involve 
displaying less information on a user interface when the officer has a 
high cognitive workload or giving the officer warnings to indicate that 
they are operating in a high-workload condition and making recom-
mendations accordingly. Knowing the cognitive workload (CW) of LEOs 
based on their physiological responses such as heartrate or eye move-
ment is one way to allow adaptive technology to respond to the state of 
the driver. This study used the data from a ride-along study with LEOs as 
a basis for developing an algorithm to provide an adaptive technology 
that can be used in police vehicles. While other naturalistic driving 
studies have been conducted with civilian drivers (Tivesten and Dozza, 
2015; Williamson et al., 2015), the findings may not be generalizable to 
LEOs due to the differences in in-vehicle technology and driving con-
ditions between the LEOs and civilian drivers. 

1.1. Cognitive workload classification 

To understand how the CW for novice LEOs can be classified, the 
differences between novices and experts have to be understood in a 
cognitive context. These differences can be summarized using Wickens’ 
human information processing model (Wickens, 2008). With regards to 
attentional resources, novices are more likely to be impaired by dis-
tractions due to higher attentional resource demands, while experts are 
less likely to be impaired and can rely on non-visual signals more easily 
(Regan et al., 1998; Mourant and Rockwell, 1970). With regards to 
memory, the chunking process for novices is less effective compared to 
experts, and novices tend to attempt to make decisions before they finish 
processing all the information (Bruer, 1993). This concept in particular 
is relevant to LEOs that are required to both search for and recall key 
pieces of information about cases they respond to while completing the 
driving task through visual and auditory modalities, sometimes simul-
taneously. Novices exhibit higher CW than experts when faced with 
critical decisions similar to those needed to prevent a MVC. (Ouddiz 
et al., 2020). In contrast, experts have better recall than novices, 
allowing them to more effectively rely on their long-term memory and 
experiences to make decisions and better manage their overall CW 
(Horswill and McKenna, 2004). One key example of this would be in 
officer response to incoming calls while in the middle of a stop. Novices 
spend more time deciding how to respond to multiple requests for action 
compared to experts that can quickly refer to their experiences and take 
action more effectively. 

Technologies and models that target novices specifically have rarely 
been able to capture all the fundamental differences between novices 

and experts to effectively model or predict their CW in various driving 
situations (Islam et al., 2020; Son et al., 2013). While there have been 
plenty of attempts to model driver CW using machine learning algo-
rithms (MLAs) (such as random forest and support vector machines), 
which estimate workload based on data fed to them in real time, in the 
past, these approaches relied on physiological variables that would be 
cumbersome to implement for naturalistic driving tasks or rely entirely 
on driving simulator data to develop their MLAs (Islam et al., 2020; Lee 
et al., 2024; Son et al., 2013). The approach taken in this study is novel 
in that it relies on physiological variables captured while nLEOs are 
performing their normal patrol duties. These physiological variables 
were collected using unobtrusive devices and included heartrate vari-
ability (HRV), percentage change in pupil size (PCPS), blink rate (BR) 
and galvanic skin response (GSR). As HRV decreases, cognitive work-
load increases, whereas increases in all other measures mentioned are 
generally indicative of higher cognitive workload. These physiological 
variables have all been validated as effective indicators of workload, and 
when combined under a single algorithm can be used to effectively 
determine an individual’s cognitive workload at a given moment 
(McDonald et al., 2019; Singh et al., 2013; Zahabi et al., 2022). These 
measures were selected for their relative consistency in evaluating 
workload while being unobtrusive to the wearer, allowing for partici-
pation in normal work activities (Fuhl et al., 2016; Schuurmans et al., 
2020). 

1.2. Problem statement and research objectives 

LEOs and more specifically novice LEOs are at a significantly higher 
risk of MVCs compared to other occupations. Taking advantage of 
technologies that accounts for the CW of LEOs might help reduce these 
crash rates. Therefore, there is a need to detect and predict CW for nLEOs 
in real-time and provide that information to in-vehicle technology. The 
objective of this study was to develop an MLA that could predict the CW 
of nLEOs using features that could be measured in real-time with un-
obtrusive devices while the patrol task is being performed. 

2. Method 

2.1. Participants 

Twenty-four (24) LEOs were recruited (age: M = 30.76 yrs, SD =
5.07 yrs; gender: 6 females, 18 males). To qualify for this study, par-
ticipants needed to have normal or corrected-to-normal vision without 
glasses, have less than 5 years of primary patrol experience (Filtness 
et al., 2013; Hillerbrand, 1989), and have more than 1.5 years of regular 
driving experience to control for workload increases caused by inexpe-
rience with the driving task. The intent of this study was to observe how 
secondary tasks could affect the CW of nLEOs while they are performing 
their duties in the vehicle, not to observe inexperience with the task of 
driving in general. From this pool of participants, four participants were 
excluded from the final count due to data collection issues or ride-along 
had to be stopped due to emergencies. All participants read and signed 
the provided informed consent form before participating in the study. As 
the study took place during the participants’ normal working hours, they 
were not compensated for their time. The study protocol was approved 
by Texas A&M Institutional Review Board (IRB 2021-0757D). 

2.2. Equipment 

An Empatica E4 (Empatica) watch was used to measure the HRV and 
GSR data from the participant. To measure the pupillometry data, the 
Pupil Labs eye tracking glasses (Pupil Labs) were used. These devices are 
validated for use in measuring these physiological measures and were 
synchronized before data were collected by plugging the E4 watch into 
the laptop used to run the eye tracking software (Fuhl et al., 2016; 
Schuurmans et al., 2020). The ride-alongs were also recorded using a 
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dash camera attached behind the front seats of the police vehicle 
(Fig. 1). 

2.3. Study procedure 

Upon arriving at the police station, the researcher presented the 
participant with an informed consent form. Once this form was signed, 
the Empatica E4 was attached to the wrist of the participant (Fig. 2) and 
activated to give the device time to calibrate while other set-up pro-
cedures were completed. 

While the E4 was calibrating, the participant filled out a de-
mographic questionnaire. The researcher used this time to set up the eye 
tracking glasses and the dash camera in the participant’s police vehicle 
as shown in Fig. 1. Then, the participant put on the eye tracking device 
and a calibration procedure was executed where the participant was 
asked to look at each of the four apriltags placed on the windshield 
without blinking as directed by the researcher. Following this step, a 
baseline pupil diameter was collected by running the eye tracking 
software for 2 min (Zahabi et al., 2021) while the participant remained 
seated in the vehicle. Another baseline pupil data was also collected at 
the end of the ride-along and before the officer left the vehicle. 

Once the calibration was completed, the study was initiated. A 
unique synchronization technique explained in the following section 
was performed to ensure that data from the E4, dash camera, and the eye 
tracking glasses could be synchronized after the data collection. The 
participant was then instructed to perform their normal patrol duties 
(such as monitoring civilian traffic for infractions and responding to 
emergency calls requiring a police presence) while wearing the eye 
tracking glasses and Empatica E4. The researcher did not initiate in-
teractions with the participant to ensure that the patrol was as natu-
ralistic as possible. Fig. 3 illustrates the set-up for the experiment, with a 
participant in the driver’s seat on the left and a researcher on the right 
(passenger seat). Note the myriad technologies that the officer has to 
interact with during their patrols and the apriltags that can be seen on 
the MCT for tracking eye movements. 

Data collection continued until at least 3 h of data were collected or 
the participant chose to stop the experiment for any reason. A 3-h time 
frame was chosen to ensure enough data could be collected to train an 
effective MLA and has been used in previous ride-along studies with 
LEOs (Zahabi et al., 2022). Data were collected during daylight hours 
due to eye tracking glasses not functioning during nighttime conditions. 
When participants were required to stop and exit their vehicle to do their 
police duties, data collection was paused, and the participant removed 
their eye tracking glasses (but not the Empatica E4). Once the partici-
pant was ready to drive again, the synchronization technique was 
repeated, and the naturalistic observation resumed. 

Once the study was concluded, the participant returned to their 
police station and the equipment used for the observation was removed. 
A Driver Activity Load Index (DALI) questionnaire was given to partic-
ipants to evaluate their CW during the driving part of their patrol 

(Pauzié, 2008b). DALI is a revised version of the NASA-Task Load Index 
(NASA-TLX) questionnaire specifically adapted to accommodate the 
driving task. The most important difference among the methods is the 
unique set of DALI demand components to promote applicability to the 
driving domain. For example, the ‘physical demand’ component of the 
NASA-TLX is not very relevant to the driving activity where maneuvers 
are not physically demanding especially in modern cars. In addition, the 
‘cognitive demand’ component of the NASA-TLX refers to both percep-
tual and cognitive aspects of workload but DALI identifies these various 
modalities in the context of driving. 

Then, the participant was given a copy of the informed consent form 
for their records and thanked for their participation. Fig. 4 outlines how 
data were collected and moved from the devices used for data collection 
and transformed into a useable format. 

2.4. Synchronization technique 

The first step in the synchronization process was ensuring that the 
dash camera and eye tracking software were turned on to record and a 
timestamp was taken with the E4 by pressing the button as shown in 
Fig. 2. Doing this caused a red LED to flash on the E4 for 3 s. This pro-
cedure was done in view of both the dash camera and the world camera 
of the eye tracking software. A file within the E4’s data storage was used 
to hold the timestamp that occurred each time the button was pressed. In 
post-processing, the data collected by all devices before this timestamp 
could be discarded to ensure that all data were synchronized. When the 
participant had to stop the observation to conduct police activities, a 
similar procedure was executed. The sampling rate for Empatica E4 for 
collecting GSR data was 4 Hz and for collecting the BVP data was 60 Hz. 
The eye-tracking device sampling frequency was varied with a cap of 
130 Hz. More information about the synchronization approach can be 
found from Wozniak et al. (2022). 

2.5. Data analysis 

Data points that fell within periods where the police vehicle was 
stopped or occurred before or after the start and end timestamps 
respectively were removed so only active patrol times were included. 
Rows of data were found in 5-min intervals starting from where the 
observation began. This interval was chosen because it is the standard 
interval used for collecting root mean squared standard deviation 
(RMSSD) data (Electrophysiology, 1996). 

RMSSD and the low frequency/high frequency (LF/HF) ratio for each 
participant were calculated using HRV data. From the GSR data statis-
tics, the skin conductance level (SCL) and skin conductance response 
(SCR) in the form of the SCLm (SCL magnitude), SCLc (SCL change), 
SCRh (index of SCR habituation), SCRa (SCR amplitude), and SCRr (SCR 
response rise) were extracted (McDonald et al., 2019; Singh et al., 2013; 
Zahabi et al., 2022). Blink rate was calculated within each 5-min interval 
using the number of blinks recorded during that period by the Pupil Labs 
eye tracking software. The PCPS was also calculated using Pupil Labs 
data and the baseline pupil diameters recorded before and after the 
ride-along. 

For instances where one of the four raw data streams could not be 
collected, the 5-min intervals associated with that set of data were dis-
carded. In the case of missing only one or two raw data streams for only 
some intervals within a participant, the missing values were approxi-
mated using a method based on accepted decision tree imputation 
methods (Rahman and Islam, 2011) . This decision tree looked at all of 
the values for the missing data value from the other 5-min intervals and 
made an estimate of the missing value using the other data collected 
from that participant. This process was only used for data values within 
participants due to the differences that exist between participants with 
regards to average physiological values. 

The final step in data analysis before MLA development could begin 
was to establish ground truth workload values for each of the 5-min 

Fig. 1. Ride-along Study Set-up (Note: MCT: Mobile computer terminal, FOV: 
Field of view). 

D. Wozniak and M. Zahabi                                                                                                                                                                                                                   



Applied Ergonomics 119 (2024) 104305

4

intervals. Because it would be unreasonable to assign DALI values taken 
for the overall ride-along as the CW for each interval, these ratings were 
weighted against the physiological features themselves to establish a 
ground truth and get around the limitations of naturalistic observation 
studies. The classification of CW was divided into two groups, “high” 
and “low” CW. This number of groups was chosen based on a fuzzy logic 
analysis in MATLAB to separate the collected physiological data into two 
CW groups, three CW groups, and five CW groups to see which sepa-
ration resulted in the most even split of data (based on pre-established 
thresholds for each physiological feature). An even split of data would 
imply that there was significant variation between the groups and that 
an MLA would be warranted. It was found that having two CW groups 
resulted in the most even split of the data, with 40.1% of data rows being 
classified as low CW. This was also considered to be reasonable due to 
the naturally high CW that was expected to be experienced by nLEOs 

during their patrol task. Similar approaches have been used in previous 
studies to find the optimal number of CW classes (Park et al., 2023). 

Each feature, including DALI ratings, was assigned to be either a high 
impact, medium impact, or low impact feature for establishing ground 
truth CW. High impact variables included DALI, RMSSD, SCLm and SCLc 
due to their resistance to environmental factors, high number of vali-
dating studies, and ability to detect minute changes in workload (Cinaz 
et al., 2013; Fallahi et al., 2016; Mehler et al., 2010, 2011; Pauzié, 
2008a, 2008b; Reimer and Mehler, 2011; Shimomura et al., 2008; 
Zakerian et al., 2018). These features were given a weight of 0.125 (or 
12% in Fig. 5) for determining the ground truth workload, with the 
thresholds for these physiological variables were established by previous 
studies (Abhishekh et al., 2013; Abusharha, 2017; Arthur, 1990; de 
Waard, 1996; Pfleging et al., 2016; Zahabi et al., 2021). Medium impact 
variables included the LF/HF ratio, SCRh, SCRa, and SCRr, due to lower 
resilience to environmental factors and high correlation to other phys-
iological measures (Cinaz et al., 2013; Fallahi et al., 2016; Hsu et al., 
2015; Novak et al., 2011; Rodriguez Paras, 2015; Verwey and Veltman, 
1996). These features were given a weight of 0.075 each (or 8% in Fig. 5) 
in determining ground truth workload. Finally, PCPS, BR, and average 
GSR were assigned as low impact features due to the nature of data 
collection impeding the quality of eye tracking data and the noise factor 
associated with raw average GSR values (Cardona and Quevedo, 2014; 
Faure et al., 2016; Iqbal et al., 2005; Johns et al., 2014; Kahng and 
Mantik, 2002; Kosch et al., 2019; Pfleging et al., 2016; Stern et al., 
1994). These features were assigned an importance weight of 0.0667 
each (or 7% in Fig. 5). The specific weights chosen for each group were 
selected to keep the weight gap between feature groups relatively low 
while still maintaining a significant difference between the high impact 
and low impact features. While there is no established guideline 

Fig. 2. Empatica E4 attachment procedure (Empatica, 2020).  

Fig. 3. Police in-vehicle technologies.  

Fig. 4. Data Movement Chart (Note: HRV: Heart rate variability, GSR: Galvanic 
skin response, PCPS: Percentage change in pupil size). 

Fig. 5. Weights assigned to features for establishing the ground truth.  
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exploring how these features should be prioritized over each other, the 
weights selected here were inferred based on the above literature and 
thorough examination of the collected data. Fig. 5 illustrates the 
breakdown in feature weight assignment between all of the features. 
Once these weights were applied to all of the 5-min intervals, ground 
truths could be established, and an MLA could be developed. 

2.6. MLA development 

Development of an MLA to predict CW of nLEOs was completed first 
by developing MLAs that were found to be prevalent in the prediction of 
CW in the driving domain. The quality of each of these MLAs was 
assessed across multiple seeds on the metrics of receiver operating 
characteristic (ROC) area under the curve (AUC), precision, and accu-
racy. The classification dataset used for validation and testing consisted 
of a randomly selected set of 20% of the overall collected data, with the 
remaining 80% of the data being used to train the model. 

3. Results 

3.1. Data screening 

After grouping the raw data into 5-min intervals, a total of 769 rows 
of data were initially created. Of those rows, only 328 had all metrics 
filled in with no missing values. Due to the nature of collecting data from 
a naturalistic setting, this amount of missing data was roughly expected. 
Sampling rate was based on the fastest recorded metric, which was 
usually eye tracking and had a variable Hz rate around 30–60 Hz. Before 
missing data could be filled in, outliers in the data had to be removed. 
This was done by finding for each column all rows that had a value more 
than two standard deviations larger or smaller than the mean for that 
column with the value in question removed. The next step in the filtering 
process was to remove rows for which there were no values to extrap-
olate average values within the participant for that column. As 229 rows 
of data needed extrapolation to fill in missing values, a decision tree 
algorithm was created to predict the missing values for each missing 
data entry for these rows. To prevent individual differences from con-
founding the predictions for these missing values, the algorithm only 
considered values within participants when filling in data. After 
removing outliers and filling in missing values, a total of 557 rows of 
data were captured. Once ground truths had been assigned to each data 
row, there were 228 rows with the high workload classification and 329 
rows with the low workload classification, meaning that approximately 
59% of the rows were classified as being low workload. 

3.2. MLA performance 

Based on previous studies on effective MLAs in the driving domain 
that relied on physiological variables, the following MLAs were selected 
to be trained by the collected data: decision trees (DT), random forests 
(RF), naïve bayes algorithms, and support vector machines (McDonald 

et al., 2019). Table 1 summarizes the best performance of these algo-
rithms on the basis of their accuracy in classifying a randomly selected 
set of 20% of the total dataset with the rest being used to train the al-
gorithm. For the MLAs besides naïve bayes, hyperparameters were 
selected and tuned using 10-fold cross validation sets from the training 
data repeated three times, with the best set of hyperparameters in terms 
of test data accuracy being selected. The support vector machine MLAs 
are split into radial and polynomial kernels indicated by SVMr and 
SVMp respectively. These two kernels were selected based on their use 
in a previous study evaluating MLAs in the driving domain using 
physiological variables only (McDonald et al., 2019). Additionally, the 
no information rate (NIR) refers to the rate of success at guessing the 
classification of a row of data with no other information available. 
Tuned hyperparameters for each seed included minimum n value, cost 
complexity, and tree depth. 

A trained MLA was considered successful if it had a higher accuracy 
than the NIR with at least 95% confidence. The results displayed the 
average of 5 seeds that performed the best from a total of 50 seed tests 
for each MLA to showcase their most effective performance. If an MLA 
had fewer than 5 seeds perform better than the NIR within a 95% con-
fidence interval (CI), then only seeds that met this condition were 
considered when averaging results. Overall, success rates were 42% for 
RF, 34% for SVMr, 8% for naïve bayes, 6% for SVMp, and 4% for DT. It 
was found that the RF model performed the best both in terms of high 
accuracy (i.e., 73%) and consistent performance when compared to the 
NIR across multiple seeds. 

Additional metrics that were evaluated to determine the best MLA 
include the AUC and precision. AUC is a measure of model performance 
at any given threshold that evaluates the predictive ability of learning 
algorithms (Huang and Ling, 2005) while precision refers to the degree 
of difference between various samples. For both metrics, high values 
indicate a more effective model. It was found that the RF model per-
formed the best on average for AUC while NB performed the best on 
precision when looking at the best performing seeds overall. The results 
of the AUC and precision comparisons are shown in Table 2. Note that no 
AUC was calculated for the naïve bayes MLA because no hyper-
parameters were manipulated. 

The MLAs were also compared in terms of the training and test times 
(i.e., the amount of time on average it took to train and run test data 
through the MLAs respectively). Once again, the RF MLA outperformed 
the other MLAs in test time with an average test time roughly 0.06 s 
faster than the second fastest MLA. Table 3 below displays the average 
training time and testing time for each MLA. Note that training time is in 
minutes and testing time is in seconds. These testing times in particular 
are important because they carry implications for how well each MLA 
might be able to perform when actually implemented into adaptive 
technology. In addition, classification of officers’ cognitive workload is a 
time sensitive task and should be performed in real-time. 

Table 1 
Accuracy results for most successful seeds of each MLA trained on physiological 
data.  

Algorithm Metric 

Accuracy (%) NIR (%) 95% CI (%) 

RF 73.21 59.24 (64, 81.1) 
SVMr 67.7 56.25 (58.22, 76.20) 
SVMp 68.62 57.4 (59.2, 77.02) 
DT 62.5 52.23 (52.86, 71.45) 
NB 71.4 53.57 (57.81, 82.69) 

Note: RF = Random Forest, SVMr = Support Vector Machine radial, SVMp =
Support Vector Machine Polynomial, DT = Decision Tree, NB = Naïve Bayes, 
NIR––No information rate. 

Table 2 
Precision and AUC results for most successful seeds of each MLA trained on 
physiological data.  

Algorithm Metric 

AUC Precision (%) 

RF 0.79 73.16 
SVMr 0.70 68.12 
SVMp 0.72 71.99 
DT 0.65 66.33 
NB N/A 76.03 

Note: RF = Random Forest, SVMr = Support Vector Machine radial, SVMp =
Support Vector Machine Polynomial, DT = Decision Tree, NB = Naïve Bayes, 
AUC = Area Under the Curve. 
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3.3. Feature importance 

Table 4 summarizes the importance of features for each of the tested 
MLAs. These feature importance ratings, generally speaking, can be 
thought of as the amount of relative weight that each MLA puts on the 
value of a feature when deciding how to classify workload, with more 
positive values indicating higher weight. Note that for SVMp and SVMr 
some feature importance ratings were negative, indicating that those 
features were not useful in predicting CW. For every MLA except for NB, 
SCRr was found to be the most important feature, with features such as 
SCRa and SCLa being considered less important. The most important 
features for the best model (i.e., RF) were SCRr, SCLc, LF/HF, PCPS, and 
SCLm respectively. 

4. Discussion 

4.1. MLA selection 

The objective of this study was to develop an MLA that could predict 
the CW of nLEOs using features that could be measured in real-time with 
unobtrusive devices while the patrol task is being performed. Out of all 
of the MLAs tested, the RF algorithm consistently performed better than 
the NIR rate in terms of accuracy while meeting the precision and ROC 
AUC guidelines found for creating effective MLAs, which include pre-
cision ratings on average of at least 0.7 as well as ROC AUC values of 
around 0.85 (Lee et al., 2010; Pencina et al., 2008). Specific values for 
good accuracy are not standardized, so 0.7 was used as a general 
benchmark in line with the precision recommendation. Under these 
guidelines, it can be assumed with confidence that the RF algorithm can 
perform well when fed new or real-time test data. These values are 
general guidelines, as the effectiveness of a MLA is primarily determined 
by its ability to learn as it obtains more data, meaning that future data 
collection should be able to improve this MLA to validate its 

effectiveness in predicting cognitive workload (El Naqa and Murphy, 
2015). Note that these MLAs were not compared to other studies due to 
this data being pulled from a naturalistic study rather than simulator or 
experiment data. Other recent studies have been conducted with similar 
objectives and were able to obtain higher classification accuracy 
(>90%) primarily due to being able to collect data in controlled simu-
lator settings (Lee et al., 2024). Of the tested MLAs, the DT algorithm 
performed the worst, failing to perform significantly better than the NIR 
rate roughly 96% of the time. Naïve bayes and SVMp algorithms per-
formed poorly as well. As naïve bayes assumes full independence of 
features and it was reasonable to assume that at least some of the fea-
tures in this dataset were related to each other, this result was expected 
for naïve bayes (Lewis, 1998). However, it was anticipated that DT and 
SVMp would perform much better than they actually did. One possible 
reason for this discrepancy would be the use of data collected in a 
naturalistic setting rather than in a laboratory or in a simulator study. 
This could also be due to the stringent requirements placed on tested 
MLAs to be considered successful in terms of accuracy with regard to the 
NIR. 

The important features found for this MLA are also of note. In 
particular, the GSR features were found to be the best for RF regarding 
predicting cognitive workload. This carries important implications for 
real-world implementation due to the E4 being the least obtrusive device 
LEOs were required to wear. While eye-tracking glasses are limited by 
the time of day and the places being driven, GSR data can be collected at 
any time without potentially intruding on officer performance. While it 
would be ideal to maintain all features used for subsequent data 
collection, knowing that the potential to truncate feature collection in a 
pinch opens up opportunities for data collection in other naturalistic 
settings that were not considered for this study, such as night patrols. 

To validate the selection of the RF MLA, several factors were 
considered, most notably the accuracy, precision, and ROC AUC on 
average of all the seeds tested with the RF MLA. As the RF MLA per-
formed better than its other competitors, it was the final MLA selected. 
Note that while specific seeds might have had other MLAs perform better 
than the RF, the RF MLA provided the most consistent results. RF al-
gorithms are also popular in the driving domain and have been used in 
several studies in the past for purposes such as driver behavior profiling, 
making incorporation to other technologies and comparisons easier to 
make (Das and Khilar, 2019; Ferreira et al., 2017; Rahman et al., 2019). 
These studies have looked at several different avenues of application 
such as using phones or in-vehicle GPS for the implementation of 
adaptive technology, and the advantages of such an algorithm would be 
invaluable to the development of these technologies. 

4.2. Real-time workload classification 

The primary reason that physiological variables alone were consid-
ered in this ride-along study design was because one of the end goals for 
the developed MLA was to be able to classify workload in real-time. The 
applications of this classification would be to implement them into 
technology that can use the current workload of the user to adjust the in- 
vehicle technology to accommodate them. Given that novice drivers are 
more prone to high workload and this higher workload can lead to more 
potentially fatal mistakes, understanding when these risks might happen 
using MLAs is critical. To offset the potential issues in accuracy of the 
MLA, new samples need to consistently be taken to have the workload 
update as frequently as possible. Individual differences also need to be 
accounted for by having the MLA be trained specifically with data 
collected for an individual participant and supplemented by the already 
collected data. To test this, a real-time algorithm was developed in py-
thon and tested in a lab setting to see if data could be recorded and run 
through the developed MLA in real-time. This was proven to be the case 
and the developed MLA was able to predict CW in real-time without 
having to stop data collection. This finding is crucial when considered in 
tandem with the test times for the developed MLAs. In addition to being 

Table 3 
Average training time and testing time for each MLA.  

Machine Learning Algorithm Training Time (minutes) Test Time (seconds) 

RF 6.97 0.02 
SVMr 1.48 0.28 
SVMp 2.34 0.31 
DT 2.20 0.15 
NB 0.62 0.08 

Note: RF = Random Forest, SVMr = Support Vector Machine radial, SVMp =
Support Vector Machine Polynomial, DT = Decision Tree, NB = Naïve Bayes. 

Table 4 
Feature importance for best MLA results.  

Feature Algorithm 

RF DT SVMp SVMr NB 

SCRr 0.21 0.41 3.90 3.90 0.26 
LF/HF 0.11 0.16 0.54 0.54 0.0052 
SCLm 0.10 0.15 0.11 0.11 8.86E-06 
Blink Rate 0.092 0.080 − 0.49 − 0.49 0.41 
SCRa 0.073 0.044 − 3.63 − 3.63 0.0045 
SCRh 0.060 0.042 − 0.90 − 0.90 0.18 
RMSSD 0.067 0.039 0.63 0.63 0.0041 
SCLc 0.12 0.030 0.053 0.053 0.00097 
avgGSR 0.067 0.025 0.59 0.59 0.10 
PCPS 0.11 0.024 0.20 0.20 0.022 

Note: RF = Random Forest, SVMr = Support Vector Machine radial, SVMp =
Support Vector Machine Polynomial, DT = Decision Tree, NB = Naïve Bayes, 
SCLm = SCL magnitude, SCLc = SCL change, SCRh = index of SCR habituation, 
SCRa––SCR amplitude, and SCRr = SCR response rise, LF/HF = Low frequency/ 
High frequency Ratio, RMSSD = Root Mean Squared Standard Deviation, 
avgGSR = Average Galvanic Skin Response, PCPS = Percentage Change in Pupil 
Size. 
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the most accurate on average, the RF MLA was by far the fastest in 
calculating the output when fed the same amount of test data as the 
other MLAs. Though the difference of a few hundredths of a second 
might seem insignificant, the longer it takes an MLA to output results in 
real-time, the higher the risk that the output it provides will be too late 
to be useful. To prevent this, an MLA that can calculate output as quickly 
as possible is essential, giving RF more credence as an optimal choice 
among the tested MLAs. 

4.3. Technology applications 

In this study, adaptive technology refers to in-vehicle technology 
that detects the driver’s workload and responds accordingly, by 
adjusting the amount/format of information that is presented to the 
driver. While performance on tasks has been shown to be most effective 
when an optimal level of arousal is maintained under the Yerkes-Dodson 
law (Yerkes and Dodson, 1908), the goal of this technology is to reduce 
the impact on the primary driving task by minimizing attention needed 
for the secondary task of using in-vehicle technology. Adaptive tech-
nology, therefore, has the dual goal of maximizing driver safety and 
making information as accessible as possible for the driver when their 
level of CW allows for it. 

Adaptive technology has the potential to take full advantage of the 
real-time workload classification MLA developed in this study. An 
example of this can be found in the information that police officers 
receive about a suspect on their MCTs. LEOs are frequently confronted 
with overwhelming amounts of text-based information that obscure 
important information and make it difficult to determine the nature of 
the situation they are driving to while focusing on the road. At the same 
time, this information might be important to the case and the LEO needs 
to be aware of it before arriving at the scene. To address this issue, 
adaptive technology based on LEOs’ workload level can be imple-
mented. Figs. 6 and 7 illustrate a prototype of a heads-up display that 
would automatically adjust its appearance based on the CW of a LEO. If 
the LEO is experiencing high workload, then a low clutter display (i.e., a 
summary page with icons showing the most important pieces of infor-
mation and their status) will be displayed (Fig. 6). Note that the red 
pictures indicate the most relevant points of information for the LEO (i. 
e., the violations). More detail on how to implement the MLA in an 
adaptive head-up display is provided in Nadri et al. Although prior 
research (Kurkinen et al., 2010; Streefkerk et al., 2006) introduced some 
adaptive technology features to the MCT (i.e., changing the information 
presentation based on the context), these adaptations were limited to 
specific MCT tasks and did not consider driver cognitive state. 

Conversely, when the LEO’s CW is low, more information can be 
made available to them (i.e., a high clutter display similar to the current 
MCT interface in police vehicles which is text-based) without increasing 
the risk of a MVC (Fig. 7). This is an example of how adaptive technology 
could be integrated with real-time CW classification from the developed 
MLA. Future studies should validate the proposed MLA with additional 
user-testing and then implement it in real-world scenarios to evaluate 
the effectiveness of this technology in reducing CW. To that end, the 
feature importance findings of this study can be useful. Given the dif-
ficulty of implementing a multitude of physiological measures into in- 
vehicle technology, prioritizing GSR in accordance with the findings 
on feature importance is also suggested. 

4.4. Limitations and future work 

The nature of naturalistic observation caused significant amounts of 
data to be lost over the course of the experiment and necessitated 
retaining all features in spite of the risk of overfitting MLAs. Mitigation 
techniques that were found to be effective to maximize the amount of 
data collected included performing data collection only in the daytime, 
targeting cloudy days to avoid the amount of eye data lost to sunlight 
glare, and ensuring that all devices are properly secured to avoid data 
loss that goes undetected until the experiment is over. 

Future studies need to continue testing the developed MLA with 
different scenarios to see how effective it is at predicting CW in scenarios 
other than the ones identified in this study. This could be done with 
driving simulator studies or further naturalistic observation studies. As 
this study was focused on novice LEOs, the recommendations and al-
gorithm are mainly for novice LEOs. Future studies should assess the 
accuracy of the model in predicting cognitive workload for expert offi-
cers. Expert officers might also need adaptive technology, but based on 
our prior ride-along observations (Shahini et al., 2020; Zahabi et al., 
2022), expert officers rely less on MCTs and are more experienced in 
handling high demand situations than novice LEOs. However, novel/-
difficult situations can cause experts to have similar behavior as novices 
meaning that adaptive technology for novices is likely to be broadly 
applicable to the situations where experts would need to take advantage 
of it. Although our proposed algorithm and adaptive system idea was not 
intended for training purposes, they can be used to train the officers to 
be more aware of the cognitive demands posed by different in-vehicle 
technologies. 

One of our future goals is to incorporate other measures such as 
driving and secondary task performance to more accurately predict 
LEOs’ CW. The results of these future experiments should provide a 
more robust MLA that can take advantage of the driving performance of 
LEOs to adjust how adaptive in-vehicle technology interacts with the 
driver. Ideally, wearable devices that are less intrusive without sacri-
ficing effectiveness should be employed. While the Pupil Labs eye 
tracking device did not impede the patrol task of LEOs significantly, 
implementing a wireless version of the glasses or one that functions as 
sunglasses that most officers wear while on duty would improve the 
quality of implemented MLAs while reducing any induced cognitive load Fig. 6. Low clutter display.  

Fig. 7. High clutter display.  
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by the system on LEOs. Development and implementation of this tech-
nology would greatly improve the quality of data collection and real- 
time MLA implementation overall. 

5. Conclusion 

A machine learning algorithm for classifying cognitive workload was 
developed based on a ride-along study with novice LEOs. This MLA uses 
physiological responses in the form of HRV, GSR, BR, PCPS, and 
extracted features from these metrics to classify workload. The results 
can be used to develop technology that can predict the workload of 
nLEOs in real-time and adapt the functions of a vehicle accordingly, 
either to emphasize or deemphasize secondary tasks. Incorporating the 
developed MLA with adaptive technology can help nLEOs to better 
manage their tasks in the vehicle and can improve their safety in police 
operations. 
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