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24.1 Introduction

Cognitive performance models (CPM) are computational models that represent humans’ perfor-
mance as they interact with interfaces and provide information on user intentions and information
processing. These models can analyze the tasks in high detail, predict operator task performance
and cognitive workload, and identify serial and parallel operations.

Use of CPM provides several advantages compared to conducting human subject experiments.
These advantages include (i) quantification and prediction of human behavior in natural tasks
based on human information processing models; (ii) the model generation does not require human
subject involvement and therefore can save time and cost in early stages of interface design and
evaluation process; (iii) these computational models can be easily modified and do not require the
analyst to have substantial programming background [43]; and (iv) the method is nonobtrusive as
compared to physiological measures of workload [45].

The CPM approach has been applied in different human factors applications, including the anal-
ysis of aerospace systems [33], augmented cognition [11], computer systems [37], human-artificial
intelligent (AI)-robot teaming [10], perception and performance [4], surface transportation [40],
and user testing and evaluation [32]. Furthermore, a number of reviews have been conducted on
CPM approaches for understanding design patterns [34], decision-making process [28], cognitive
architecture [23], application of CPM in aviation safety [26], and error prediction [27]. However,
there has been no comprehensive review on application of CPM approaches for understanding
human–system interaction (HSI), which is the main focus of this chapter.

24.2 Background

Early models were used to quantify HSI in military applications during World War II [28]. These
models included Fitts’ law [12], Hick and Hyman’s selective response model [15], and the signal
detection model [38]. The Command Language Grammar developed by Moran [31] could be
considered as the first human–computer interaction (HCI) model [1]. The top-down approach
decomposed the tasks and gave a conceptual view of the interface during the design process.

Handbook of Human-Machine Systems, First Edition. Edited by Giancarlo Fortino, David Kaber,
Andreas Nürnberger, and David Mendonça.
© 2023 The Institute of Electrical and Electronics Engineers, Inc. Published 2023 by John Wiley & Sons, Inc.
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Figure 24.1 Model Human-Processor. Source: Modified from Card et al. [8].

However, it mainly focused on modeling human motor activities and did not include perceptual
and cognitive operators.

A basic architecture of human performance model is illustrated in Figure 24.1 [8]. After the
initial models, various CPMs emerged applying cognitive science theory [34]. These models
included Goals, Operators, Methods, and Selection (GOMS) rules [7], Adaptive Control of
Thought-Rational (ACT-R) [2], Executive-Process Interactive Control (EPIC) [21], State, Operator,
and Result (SOAR) [25], and Queuing Network-Model Human Processor (QN-MHP) [30].

These CPMs have been extended for specific purposes, especially GOMS and ACT-R models, as
illustrated in Figure 24.2. Although the original GOMS models only supported serial activities, this
limitation was resolved in later models such as the Critical Path Model-GOMS method. In addition,
some variants of keystroke-level models (KLM) were developed for assessing HSI in touchscreen
(i.e. touch-level model, TLM) and gesture-based interfaces (i.e. gesture-level model, GLM). Other
variants of these models were generated for cockpit evaluation, reliability analysis, and modeling of
social interactions (e.g. Enhanced-GOMS Language [13], GOMS-Human Reliability Analysis [5],
sociotechnical GOMS [42]). ACT-R models have also been advanced for specific applications such
as image processing and analyzing mobile applications, or by integration with other models and
different programming languages. However, there have not been many advances in the applications
of other methods such as QN-MHP, EPIC, or SOAR.

24.3 State-of-the-Art

In this review, we provided a general description of CPMs with their capabilities and limitations to
further identify the challenges associated with their use and provide directions for future research.
Modeling using the GOMS method starts with constructing a hierarchical structure of goals from
top-level goals and is processed until the unit tasks or subgoal levels cannot be further decom-
posed [41]. To achieve a goal at the unit-task level, methods (or interactive routines) are required
to specify what operators need to be executed to perform a specific action. GOMS method is based
on the Model Human Processor (MHP) theory [8]. Goals are symbolic structures that establish
the state to be achieved. Operators are fundamental perceptual, motor, or cognitive acts whose
execution is needed to change any aspect of the user’s mental state or affect the task environment.
Methods describe a procedure for a goal. Finally, selection rules are required if more than one
method is available for a user to accomplish the goal. There are numerous extensions of GOMS,
including KLMs [6], Cognitive-Perceptual-Motor GOMS [16], Goals, Operators, Methods, and
Selection Language (GOMSL) [17], Natural Goals, Operators, Methods, and Selection Language
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Figure 24.2 Major CPMs and their extensions.
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(NGOMSL) [18], and Enhanced GOMSL [13]. KLM is a method that predicts task completion time
for experts to accomplish a routine task without errors. CPM-GOMS is an advanced method in that
it can model parallel processes. NGOMSL is a high-level (natural language) syntax for GOMS rep-
resentation. GOMSL is an executable form of NGOMSL and a computationally realized version of
MHP, which is a basis of GOMS. Although GOMS is a fast and easy model to develop and includes
all processes to access task performance, it mainly represents the behavior of expert users without
errors, and is deterministic. Also, adding mental operators should be consistent following the
rules in [20].

ACT-R provides models of elementary and irreducible cognitive and perceptual operations that
enable human information processing. In theory, each task that humans can perform consists of
a series of these discrete operations [3]. ACT-R’s primary time unit is 50 ms which can describe
human information processing in a fine-grained resolution. In addition, ACT-R can generate
essential outcomes such as time to perform a task and accuracy. ACT-R’s specific characteristics
include connection between human cognition and perception, detailed modeling algorithm for
memory process including memory storage/update/decay/retrieval estimates based on mathemat-
ical equations, and use of standard symbolic variables. In this method, chunks and production
rules are discrete, and their operations are syntactical, which means that they do not refer to the
semantic content of the representations but only to the properties that deem them appropriate
for calculations. However, ACT-R models have some limitations, including (i) the models only
allow serial access of cognitive operators, (ii) they have been mainly used in academic research,
and (iii) it takes a long time to model (at least several days to weeks of using the system) and takes
months to years to become an expert in its use [35].

EPIC is a general framework, represented as a simulation modeling environment, in which
models of human performance in specific tasks may be constructed [21]. Since EPIC was mainly
developed for modeling perception and motor functions [39], it influenced the development
of ACT-R/Perceptual and Motor and SOAR that combined detailed perceptual and motor
components into their models [34]. Similar to ACT-R and SOAR, EPIC models encompass a
production-rule system (a “cognitive processor”) that provides procedural knowledge. “Perceptual
processors” also process different sensory information including visual, tactile, and auditory
information. The outcomes of the perceptual processors are delivered to working memory. There
are two types of working memory that are not related to the sensory-motor information: one is to
store current goals and steps to reach those goals (i.e. “control store”), and the other is a general
working memory for miscellaneous information. Similar to ACT-R, modeling work of EPIC is
complex, and therefore, it has been mainly used for academic research. Also, the model does not
consider changes in human behavior as a result of learning a system. For example, users may
perform tasks in a serial manner at the beginning, while they can perform the same tasks in
parallel once they learn the system and change their interaction style.

SOAR is a functional model to understand cognitive mechanisms as a basis of intelligent human
behavior [25]. Also, it is an architecture for human cognition expressed in the form of a production
system. SOAR can represent extensive and complex rule sets. Its primary use is in artificial intelli-
gence (AI) and cognitive modeling. In addition, it has been combined with EPIC’s perceptual-motor
processors. AI agents in SOAR can be developed based on different types of knowledge, whether
programmed or learned by the system. In addition, in SOAR, cognitive tasks can be processed
in parallel, which is the main distinction between this model and models such as ACT-R and
CPM-GOMS.

Lastly, QN-MHP is a computational cognitive architecture that integrates the mathematical
framework of queuing network theory with MHP [30]. Based on a network structure of 20 process
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Table 24.1 Comparison of cognitive performance models.

Feature GOMS ACT-R EPIC SOAR QN-MHP

Capability Estimate task Estimate task Estimate task Estimate task Estimate task
performance and performance and performance, performance, performance,
cognitive workload cognitive workload, cognitive workload cognitive workload cognitive workload

outcomes similar to
neurological data

Characteristics Fast and easy Integration of Detailed perception Multiple problem spaces, Based on human brain
modeling, can see perception, cognition, and motion unlimited working structure and functions,
the detailed codes and motor functions, algorithm access use of queuing theory,

detailed modeling of real-time visualization
memory, symbolic language

Limitations Modeling of skilled Serial cognitive process, Does not consider Not subject to Not publicly
user behavior, mainly used in human learning forgetting, learning is availablea)

deterministic academia, complex capabilities, mainly tied to impasse,
operator time modeling used in academia, complex modeling

complex modeling
Major application Human–computer Memory, attention, Visual search, Expert system, Surface Transportation

interaction education auditory tasks Autonomous agents
Language or Tool Cogulator CogTool, Common Lisp, Common Lisp, C++ C, Java ProModel, Matlab,

Python, Java Eclipse

a) The model can be accessed by contacting the model authors.
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units (e.g. visual recognition server, phonological loop server, or sensorimotor integration server),
different cortical areas of human brain and corresponding functional modules of human infor-
mation acquisition, processing, and implementation are simulated. Because of this “brain-like”
structure, QN-MHP can visualize internal information flows during the simulation of related
activities. However, its inability to generate or model complex cognition such as language
comprehension or problem-solving requires creating new rules rather than only using the rules
preprogrammed by a model developer [29]. In addition, QN-MHP codes and software application
for creating these models are not publicly available. A comparison of these models is provided in
Table 24.1.

24.4 Current Research Issues

Some of the developed models (e.g. SOAR and EPIC) are difficult to use for practitioners or experts
in different domains even though there are several documents explaining the methods in detail
(e.g. [19]). There were a few cases of using CPMs in the military domain such as Air Force [24], or
Office of Naval Research [22]. This was mainly possible because the authors of these models (i.e.
SOAR and EPIC) were engaged in those projects. Although all of the models argue that they can
be used to evaluate human performance while interacting with a commercially available product
or service such as mobile phones, in-vehicle displays, or vehicles, applying CPM to commercial
applications still seems far away [44]. Finding, learning, and applying models in other commercial
domains still demand practitioners to consider the merits of using models in their work.

Another issue with CPMs is model validation. Some of these models have been found to be
inadequate or outdated after conducting validation studies [1]. This issue and the limitation above
regarding the difficulty of using these models could be why so many model extensions in the fam-
ily tree are not currently used. In addition, without validation, use of these models in commercial
applications is not justifiable.

Finally, moderator effects have not been included in the current models. The models assume a
fixed set of parameters and do not reflect users’ interaction style change in the middle of the task
(e.g. serial to parallel task performance). Although a few studies investigated the effects of stress,
fatigue, sleep deprivation, drugs, or emotions on human performance, they did not implement how
the model mechanism could change as a result of these effects [14]. Also, group behavior modeling
has not been incorporated in these models (e.g. drones, ground weapon systems, or robots).

24.5 Future Research Directions Dealing with the Current Issues

In order to enhance the use of CPM approaches in future, we recommend the following steps:

1. A technical group which has the expertise and authority to manage models is needed (e.g.
Human Performance Modeling-Management Group [HPM-MG]). HPM-MG includes steps for
model development and releases and protocols for model verification, validation, and accredi-
tation (VVA) [36]. In HPM-MG, a simplified version of the VVA process should be established
and applied to the models. In the verification stage, researchers first propose a new method-
ology with possible data. This is what current studies are doing. Next, in the validation stage,
the researchers need to validate the model with additional data and compare with other models.
One of the possible ways for validation is using a genetic algorithm to automate the model fitting
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work [34]. Finally, the researchers should develop a user-friendly interface (e.g. graphical user
interface), manual, and tutorials for practitioners in the accreditation stage. HPM-MG oversees
each stage and finally accredits the model. Furthermore, this process can improve the trans-
parency and reproducibility of the model. A common repository or portal can also be provided
to researchers to share each model’s latest status to avoid redundant work or using outdated
information.

2. A user-friendly modeling interface is needed. CogTool is one of the examples which enables
modeling without coding. However, it is mainly used for webpage usability analysis, and the
tool needs to be updated. The latest version on Github is from 2014 (https://github.com/cogtool/
cogtool). Cogulator is another CPM interface, which requires coding and does not allow loops
(https://cogulator.io/). Distract-R is a GUI-based model for driving (https://www.cs.drexel.edu/
~salvucci/cog/distract-r/). However, the model has specific routes and can only model dial-pad
based secondary task devices.

3. Analysts who are interested in using CPM but are not familiar with modeling work should refer
to Figure 24.1 and Table 24.1 first to decide the appropriate model and its extension. Then, they
need to select and use a GUI-based tool. Finally, once they develop a particular model and if need
additional functions, they can look into a coding-based approach that enables more detailed
functionalities. For example, an analyst can implement or modify specific arguments of a func-
tion in the original code.

4. Dynamic parameter adjustment or mechanism of calculation is required for users’ skill develop-
ment and changes in performance due to external stimulus (e.g. fatigue or stress) in the middle
of the task. For example, Cognitive Jack (CoJACK) project enabled an agent to learn knowledge
from the environment and generate new behaviors [34]. Recently, ACT-R/phi has been devel-
oped to model moderators of cognition and combined that with human physiology. This is a
more straightforward way as some of the physiological modulating processes entail bottom-up
effects on cognitive processes [9].
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